

Current Transducer LT 4000-S/SP34

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

M max
Ω
Ω
mA
V
mA
kV

Accuracy - Dynamic performance data

X _G	Overall accuracy @ \mathbf{I}_{PN} , $\mathbf{T}_{A} = 25^{\circ}\mathrm{C}$ Linearity		± 0.5 < 0.1		% %
I _о I _{от}	Offset current @ $\mathbf{I}_{\rm p}$ = 0, $\mathbf{T}_{\rm A}$ = 25°C Thermal drift of $\mathbf{I}_{\rm O}$	- 25°C + 70°C	Typ ± 0.6	± 0.8	mA mA
t _, di/dt f	Response time $^{1)}$ @ 90 % of $\mathbf{I}_{\text{P max}}$ di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	100	μs A/μs kHz

General data

$\mathbf{T}_{_{\mathrm{A}}}$	Ambient operating temperature	- 25 + 70	°C
T _s	Ambient storage temperature	- 40 + 85	°C
R̈́	Secondary coil resistance @ T _a = 70°C	15	Ω
m	Mass	6	kg
	Standards	EN 50155	_
		EN 50178	

Note: 1) With a di/dt of 100 A/µs.

 $I_{DN} = 4000 A$

Features

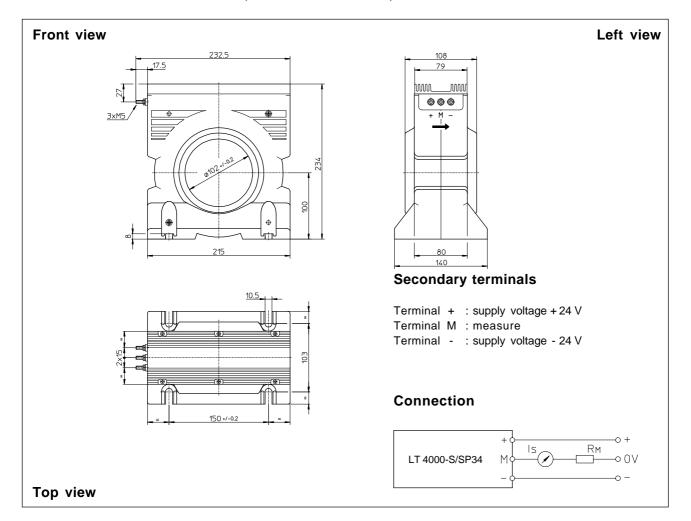
- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $V_d = 12 \text{ kV}$
- Railway equipment.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

070111/1

Dimensions LT 4000-S/SP34 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Primary through-hole
- Connection of secondary fastening torque
- ± 1.0 mm
- 4 slots \varnothing 10.5 mm \varnothing 102 mm
- M5 threaded studs 2.2 Nm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.